Graph-Based Ascent Algorithms for Function Maximization
نویسندگان
چکیده
We study the problem of finding the maximum of a function defined on the nodes of a connected graph. The goal is to identify a node where the function obtains its maximum. We focus on local iterative algorithms, which traverse the nodes of the graph along a path, and the next iterate is chosen from the neighbors of the current iterate with probability distribution determined by the function values at the current iterate and its neighbors. We study two algorithms corresponding to a Metropolis-Hastings random walk with different transition kernels: (i) The first algorithm is an exponentially weighted random walk governed by a parameter γ. (ii) The second algorithm is defined with respect to the graph Laplacian and a smoothness parameter k. We derive convergence rates for the two algorithms in terms of total variation distance and hitting times. We also provide simulations showing the relative convergence rates of our algorithms in comparison to an unbiased random walk, as a function of the smoothness of the graph function. Our algorithms may be categorized as a new class of “descent-based" methods for function maximization on the nodes of a graph.
منابع مشابه
Using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators
With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous...
متن کاملFast Parallelizable Algorithms for Transmission Image
| This paper presents a new class of algorithms for penalized-likelihood reconstruction of attenuation maps from low-count transmission scans. We derive the algorithms by applying to the transmission log-likelihood a variation of the convexity technique developed by De Pierro for the emission case. The new algorithms overcome several limitations associated with previous algorithms. (1) Fewer ex...
متن کاملDijkstra's algorithm and L-concave function maximization
Dijkstra’s algorithm is a well-known algorithm for the single-source shortest path problem in a directed graph with nonnegative edge length. We discuss Dijkstra’s algorithm from the viewpoint of discrete convex analysis, where the concept of discrete convexity called L-convexity plays a central role. We observe first that the dual of the linear programming (LP) formulation of the shortest path ...
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS Dijkstra’s Algorithm and L-concave Function Maximization
Dijkstra’s algorithm is a well-known algorithm for the single-source shortest path problem in a directed graph with nonnegative edge length. We discuss Dijkstra’s algorithm from the viewpoint of discrete convex analysis, where the concept of discrete convexity called L-convexity plays a central role. We observe first that the dual of the linear programming (LP) formulation of the shortest path ...
متن کاملGrouped-Coordinate Ascent Algorithms for Penalized-Likelihood Transmission Image Reconstruction - Medical Imaging, IEEE Transactions on
This paper presents a new class of algorithms for penalized-likelihood reconstruction of attenuation maps from low-count transmission scans. We derive the algorithms by applying to the transmission log-likelihood a version of the convexity technique developed by De Pierro for emission tomography. The new class includes the single-coordinate ascent (SCA) algorithm and Lange’s convex algorithm fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.04475 شماره
صفحات -
تاریخ انتشار 2018